Porous Titanium for Dental Implant Applications
نویسندگان
چکیده
Recently, an increasing amount of research has focused on the biological and mechanical behavior of highly porous structures of metallic biomaterials, as implant materials for dental implants. Particularly, pure titanium and its alloys are typically used due to their outstanding mechanical and biological properties. However, these materials have high stiffness (Young’s modulus) in comparison to that of the host bone, which necessitates careful implant design to ensure appropriate distribution of stresses to the adjoining bone, to avoid stress-shielding or overloading, both of which lead to bone resorption. Additionally, many coating and roughening techniques are used to improve cell and bone-bonding to the implant surface. To date, several studies have revealed that porous geometry may be a promising alternative to bulk structures for dental implant applications. This review aims to summarize the evidence in the literature for the importance of porosity in the integration of dental implants with bone tissue and the different fabrication methods currently being investigated. In particular, additive manufacturing shows promise as a technique to control pore size and shape for optimum biological properties. OPEN ACCESS
منابع مشابه
Lanthanum-containing hydroxyapatite coating on ultrafine-grained titanium by micro-arc oxidation: A promising strategy to enhance overall performance of titanium
Titanium is widely used in biomedical materials, particularly in dental implants, because of its excellent biocompatibility and mechanical characteristics. However, titanium implant failures still remain in some cases, varying with implantation sites and patients. Improving its overall performance is a major focus of dental implant research. Equal-channel angular pressing (ECAP) can result in u...
متن کاملElectrochemical coating of dental implants with anodic porous titania for enhanced osteointegration
Clinical long-term osteointegration of titanium-based biomedical devices is the main goal for both dental and orthopedical implants. Both the surface morphology and the possible functionalization of the implant surface are important points. In the last decade, following the success of nanostructured anodic porous alumina, anodic porous titania has also attracted the interest of academic researc...
متن کاملFabrication of porous titanium implants by three-dimensional printing and sintering at different temperatures.
This study evaluated the feasibility of using three-dimensional printing (3DP) to fabricate porous titanium implants. Titanium powder was blended with a water-soluble binder material. Green, porous, titanium implants fabricated by 3DP were sintered under protective argon atmosphere at 1,200, 1,300, or 1,400°C. Sintered implant prototypes had uniform shrinkage and no obvious shape distortion aft...
متن کاملCORROSION BEHAVIOR OF BIOACTIVATED TITANIUM DENTAL IMPLANT USING DIFFERENT CHEMICAL METHODS
At the past, damaged tissue was removed from the body of patients. But now tissue regeneration using scaffolds and implants are used to repair the damaged tissue and organs. Besides of the mechanical properties of metallic biomaterials, they suffer from bioinertness. Using some surface treatment techniques, the bioactivity and also corrosion resistance of titanium implants could be improved. In...
متن کاملPorous Titanium Granules and Blood for Bone Regeneration around Dental Implants: Report of Four Cases and Review of the Literature
A regenerative procedure treating a local osseous defect around titanium dental implant using porous titanium granules is described in four patients. Porous titanium granules represent, for maxillofacial surgery, a new alternative in augmenting osseous defects. Its earliest application was in the field of orthopedics for stabilization of tibia plateau fractures and for reoperations in prostheti...
متن کامل